CS-200
Computer Architecture

Part 4d. Instruction Level Parallelism
Dynamic Scheduling

Paolo lenne

<paolo.ienne@epfl.ch>

Starting Point (Programmer Model)

* Sequential multicycle processor

1: Cycles

y Instructions

* The processing of each instruction individually as been squeezed as much
as possible to make execution as fast as possible

e What’s next?!

Pipelined Processor

* For instance, 5-stage pipeline with all forwarding paths (E=2E,
M-—2>E, and W—>D) typical of MIPS and RISC-V

frereenen e saeen o =S P :

_n

First Step: Pipelining

[1F | ID | EX [MEM| WB Cycles
. 2 IF| D EX [MEM| WB

S 3| 1F 1D EX |MEM| wB

S 4| IF ID EX |MEM| WB
E 5:{ IF | ID | EX

e Simplest form of Instruction Level Parallelism (ILP): several instructions
are now executed at once

l Instructions

CycIe:s

ILP So Far...

7”7

Py

1 1
Standard

Pipe

ining

Simple Pipelining

e Scope for parallelism is limited:

4 N
— Data hazards limit the usability of the pipeline
* Whenever the next instruction cannot be executed, the pipeline is stalled and no new useful work is done
g until the “problem” is solved (e.g., cache miss))

— Control hazards limit the usability of the pipeline

* Must squash fetched and decoded instruction following a branch
* Rigid sequencing
— Special “slots” for everything even if sometimes useless (e.g., M)

— Every instruction must be coerced to the same framework (floating point vs.
integer?)

— Structural hazards avoided “by construction”

Dynamic Scheduling: The Idea

* Extend the scope to extract parallelism: Any

long-running

instruction
divd Sf0, $f2, S$f4
addd Sf10, Sf0, S$£8
subd Sfl2, S$f8, $fl4

* Why not to execute subd while addd waits for the result of divd?

* Relax a fundamental rule: instructions can be executed out of program
order! (but the result must still be correct...)

Break the Rigidity
of the Basic Pipelining

* Continue fetching and decoding even and especially if one cannot execute previous
instructions

* Keep writeback waiting if there is a structural hazard, without slowing down execution

4)

Solution: Split the tasks in independent units/pipelines

Fetch and Decode
Execute
Writeback

_ J

e C(Clearly, results will also out-of-order (000)...

Dynamically Scheduled Processor

Sort of “thick”
—— pipeline registers

All possible
forwarding paths

Problems to Solve

e Structural Hazards
— Are the required resources available?
— New problem: previously handled by rigid pipeline

* RAW Data Hazards
— Are the operands ready to start execution?
— Old problem

e WAR and WAW Data Hazards

— The new data overwrite something which is still required?
— WAW is a completely new problem—impossible before; WAR often cannot occur

Reservation Stations

A reservation station checks that the operands are available (RAW) and that the Execution Unit is free
(Structural Hazard), then starts execution

from from
F&D Unit v v v v v EUs and RF
Op Tagl Tag2 Argl Arg2
ALU1:
ALU2: | 1 [subd| ALU3 — ?22?? Oxffff feel
ALU3: |] |addd| — | MUL3 |0xa87f b351 ?2?2?
v

Each entry is similar to the
ALU original pipeline register

v

vy

Reservation Stations

Fetch&Decode Unit and Register File

(1) Fetched operation descriptions and All Execution Units
(2a) known operands (from RF) (1) Tags of the executed operations
or (2b) source-operation tags and (2) corresponding results

N/

Reservation
Station

'

Dependent Execution Unit
(1) Description of operations ready to execute
with (2) corresponding tags and (3) operands

Problems to Solve

e Structural Hazards
— Are the required resources available?
— New problem: previously handled by rigid pipeline

e RAW Data Hazards

— Are the operands ready to start execution?
— Old problem

e WAR and WAW Data Hazards

— The new data overwrite something which is still required?
— WAW is a completely new problem—impossible before; WAR often cannot occur

WAR and WAW Data Dependences

divd $FfO, $f1, S$f2
addd $£;7‘$f0 $£4
subd $f4f $f6
adddi $f0, $£5, 10

True or data
dependencies

e addd has a RAW dependence on divd }(J Name
* subd hasa WAR dependence on addd l ____ dependencies

¢
e adddi hasa WAW dependence on divd

In-order Completion

e Simple pipelines have no WAR and WAW hazards by construction

divd $£f0,$£f1,$£2

\

addd $£3,$£f0,$f4

/7

subd| $£f4,5£f5,5£f6

adddi $£0,$£5,10

IF

ID

EX1

EX2

EX3

EX4

EX5

MEM

WB

IF

IF

ID

EX

MEM

WB

Out-of-order Completion

* Dynamic pipelines may create WAW hazards

divd $£0,5f1,5£2 | IF | ID [EX1|EX2|EX3|EX4|EX5|WB

L"»EX WB
subd $f4,$f5,$f6

adddi $£0,$£5,10 IF | ID | EX -

addd $£3,$f0,5f4 IF

WB

Register Renaming

WAW and WAR dependences are also called name
dependences: they do not carry a value between to instructions

Often created by compilers to reuse the same registers

Can be removed by avoiding the use of the same “name” >
rename the destination register whenever a new value is
created

Both the compiler (statically) and the processor (dynamically)
can do that

Register Renaming

divd $£0 $f1 $f2
addd $f3$};
subd $f5 Sf6
adddi $f0, $f4, 10
divd $Sf0, $f1, $f2
_ addd $f3, $£f0, S$f4
Renaming removes
WAR and WAW \ subd D r30 s£5, s£6
dependences
adddi $£29, $£30, 10

Reservation Stations

Unavailable operands are identified by the name of the reservation
station in charge of the originating instruction

Implicit register renaming, thus removing WAR and WAW hazards
New results are seen at their inputs through special result bus(es)

Writeback into the registers can be done in-order or, to some extent, out-
of-order

Dynamically Scheduled Processor

Instruction
Fetch & Decode
Unit

v v v v
Reservation‘ Reservation‘ Reservation‘ Reservation‘

Stn. Stn. Stn. Stn.
Register File
. Branch Load/Store
ALU FP Unit Unit Unit
Commit
Unit

Out-of-order
Commitment and Exceptions

Exception handlers should know exactly where a problem has occurred,
especially for nonterminating exceptions (e.g., page fault)

Of course, one assumes that everything before the faulty instruction was
executed and everything after was not

With dynamic execution it might no longer be true...

A Problem with Exceptions...

. . : Precise
Precise exceptions i St4, $t2, OxEE
— Reordering at commit; user view is that of andi $t5, S$t4, Oxff
. addi Sv0, $t5, 1
a fully in-order processor orl st2. $t2. 8
. i i > 1w $t3, 8(5$t6)
Imprecise exceptions i ita. $t3, 3
— No reordering; out-of-order completion addi $t0, $t0, 4
visible to the user addi vtl, sel, 4
— The OS/programmer must be aware of the _ Imprecise
problem and take appropriate action (e.g., :ﬁgi ztg’ zti / gzg
execute again the complete subroutine addi $v0: $t5: 1
where the problem occurred) srl St2, St2, 8
2> lw $t3, 8(St6)
andi S$td, $t3, 3

Generally unacceptable in addi $t0, $t0, 4
contemporary systems / addi $tl, $tl1, 4
(e.g., virtual memory, 1/0O
interrupts, unsupported
instructions)

Reordering Instructions
at Writeback

e Needs areorder buffer in the Commit Unit

from from EUs
F&D Unit 1 l l l l
Excpt. PC Tag Register Address Value
Was there an O
exception? O
(see later) head
€ad to MEM
K 0 | 0x1000 0004 $£3 0x627f basa [—— = o0
—> 1 | 0x1000 0008 | MEM1 0xa87f b351 ?2?? '\
0 | 0x1000 000c | MUL2 | $£5 1‘ ?2?? The result,
once available
0

tail r
The “external” and
The destination of the result:

“internal” identifiers of
the instruction

register or memory address

Reorder Buffer

Fetch&Decode Unit

(1) Fetched-operation tags in original All Execution Units
order, (2) destination register or (1) Tags of the executed operations
address, and (3) PC and (2) corresponding results

N/

Commit Unit
(Reorder Buffer)

'

Register File and Memory
For each instruction, in the original fetch order,
(1) destination register or address and (2) value to write

Dynamically Scheduled Processor

Instruction Computation advances independently
Fetch & Decode from machine state updates
Unit

v v \ 4 v
Reservation‘ Reservation‘ Reservation‘ Reservation‘ Cg

Stn. Stn. Stn. Stn.
Register File
ALU EP Unit Bran_ch Load/S_tore)
Unit Unit

] O«

Commit Qe 1

Machine state is
updated in order

Fetching and Decoding Instructions

from
F&D Unit I § I 1 |
Excpt. PC Tag Register Address Value

0
0
0 | 0x1000 0004 $£3 0x627f basa
1 | 0x1000 0008 | MEM1 0xa87f b351| 227?
0 | 0x1000 000c | MUL2 | $£5 22?

m’ 0 |0x1000 0010| ALU3 | $£7 22?
0

from EUs

head to MEM

and RF

Committing Instructions (1/4)

Excpt. PC Tag Register Address Value
0
0
0 [0x1000 0004 $£3 0x627f ba5a |——
0 [0x1000 0008 | MEM1 Oxa87f b351 ?2?2?
0 [0x1000 000c| MUL2 | $£5 ?2?2?
0 [0x1000 0010 $£3 Oxa2cd 374f
0 [0x1000 0014 | MEM3 0x3746 09fa 2?2?
tail O

Write 0x627£fba5a to register $£3

tail

Committing Instructions (2/4)

head

Excpt. PC Tag Register Address Value
0
0
0
0 [0x1000 0008 | MEM1 0xa87f b351 ?2??
0 [0x1000 000c| MUL2 | $£5 ?2?2?
0 | 0x1000 0010 Sf3 Oxa2cd 374f
0 |0x1000 0014 | MEM3 0x3746 09fa ?2??
0

Wait until the oldest instruction has its result

Committing Instructions (3/4)

Excpt. PC Tag Register Address Value
0
0
0
O [0x1000 0008 Oxa87f b351 | 0x98cd 76a2 [—
O [0x1000 000c S$£5 0x7677 abcd
O [0x1000 0010 S$£3 Oxa2cd 374f
O [0x1000 0014 | MEM3 0x3746 09fa ?22??
tail O

Write 0x98cd76a2 to memory location 0xa87£fb351

Committing Instructions (4/4)

Excpt. PC Tag Register Address Value
0
0
0
0
0 [0x1000 000c S£5 0x7677 abcd |—=
0 [0x1000 0010 $£3 Oxa2cd 374f
0 [0x1000 0014 | MEM3 0x3746 09fa ?2??
tail O

Write 0xa2cd374 € to register $£5

Reordering and Precise Exceptions

How does this help with exceptions?

* When a synchronous exception happens, we do not report it but
we mark the entry corresponding to the instruction which
caused the exception in the ROB

* When we would be ready to commit the instruction, we raise
the exception instead

e We also trash the content of the ROB and of all RSs

Reporting Exceptions (1/3)

Excpt. PC Tag Register Address Value
0
0
0x1000 0004 $£3 0x627f baSa [——>
1 |Px1000 0008 | MEM1 0xa87f b351 ?2?2?
0x1000 000c | MUL2 | $£5 ?22?
0 [0x1000 0010 $£3 Oxa2cd 374f
0 [0x1000 0014 | MEM3 0x3746 09fa 2?2?
——1 0

The store MEML1 results in a TLB Miss = We simply record it

Reporting Exceptions (2/3)

head

Excpt. PC Tag Register Address Value
0
0
O | 0x1000 0004 Sf3 0x627f baba
1 | 0x1000 0008 | MEM1 0xa87f b351 ?2??
0 [0x1000 000c| MUL2 | $£5 ?2?2?
0 | 0x1000 0010 Sf3 Oxa2cd 374f
0 |0x1000 0014 | MEM3 0x3746 09fa 2??
tail ()

Write 0x627fba5a to register S$£3 as if nothing happened

Reporting Exceptions (3/3)

Excpt. PC Tag Register Address Value
0
Exception PC 0
o
1 [0x1000 0008 | MEM1 0xa87fb351| ??? ——

Now raise the TLB Miss exception in the instruction at location 0x10000008

Problems to Solve

e Structural Hazards
— Are the required resources available? -
— New problem: previously handled by rigid pipeline |

* RAW Data Hazards Reservation stations take care of

— Are the operands ready to start execution? contention for execution units
The commit unit writes back one
— Old problem

instruction at a time
e WAR and WAW Data Hazards

— The new data overwrite something which is still required?
— WAW is a completely new problem—impossible before; WAR often cannot occur

Reservation Stations

A reservation station checks that the operands are available (RAW) and that the Execution Unit is free
(Structural Hazard), then starts execution

from from
F&D Unit v v v v v EUs and RF
Op Tagl Ti Arg2
ALU1:
ALU2: |] |subd| ALU3 Oxffff feel
ALU3: |] |addd| -— ?22?

>
=
c

vy

Decoding and Dependences

When decoding an instruction, we are supposed to put, for each operand, either a tag or
a value in the corresponding reservation station—but how do we know if we can read the
register file, for instance?!

r \
The Reorder Buffer (ROB) knows of all instructions

not yet committed and of their destination registers

Possible situations:
 No dependence = Read the value from the RF

 Dependence from an ongoing instruction
— If the value is already computed = Get the value from the ROB
— If the value is not yet computed = Get the tag from the ROB

No Dependence

Excpt. PC Tag Register Address Value
0
0
0 [0x1000 0004 S£2 0x627f ba5a |——
0 [0x1000 0008 $£3 Oxa87f b351
0 [0x1000 000c| MUL2 |IS£5 ?2?2?
0 [0x1000 0010| ALU3 [JS£3 ?2?2?
0 [0x1000 0014 | MEM3 0x3746 09fa ?2?2?
tail 0

Looking for $£1°
No ongoing instruction will produce it, hence it is safe to read it from the Register File

Dependence and Value in the ROB

Excpt. PC Tag Register Address Value
0
0
0 [0x1000 0004 S£2 0x627f ba5a |——
0 [0x1000 0008 $£3 Oxa87f b351
0 [0x1000 000c| MUL2 |IS£5 ?2?2?
0 [0x1000 0010| ALU3 [JS£3 ?2?2?
0 [0x1000 0014 | MEM3 0x3746 09fa ?2?2?
tail 0

Looking for $£27?

An ongoing instruction has produced it, hence we should read 0x627£fba5a from the ROB :

Dependence and Tag in the ROB

Excpt. PC Tag Register Address Value
0
0
O | 0x1000 0004 Sf2 0x627f baba
O | 0x1000 0008 $£3 Oxa87f b351
0 [0x1000 000c| MUL2 |IS£5 ?2?2?
0 [0x1000 0010| ALU3 [J$£3 2??
0 |0x1000 0014 | MEM3 0x3746 09fa 2??
tail ()

An ongoing instruction will produce it, hence we need to use tag MUL2 as found in the ROB

Looking for $£57

head

4
0]

Multiple Dependences?

Excpt. PC Tag Register Address Value
0
0
0 [0x1000 0004 S£2 0x627f ba5a |——
0 [0x1000 0008 $£3 Oxa87f b351
0 [0x1000 000c| MUL2 |IS£5 ?2?2?
0 [0x1000 0010| ALU3 [JS£3 ?2?2?
0 [0x1000 0014 | MEM3 0x3746 09fa ?2?2?
tail 0

Looking for S$£37?
Two ongoing instructions produce it and it is the most recent one which matters (ALU3)

Dependences through Memory

The way we detect and resolve dependences through memory (a store at
some address and a subsequent load from the same address) is the same as
for registers

For every load, check the ROB:

a) If there is no store to the same address in the ROB, get the value from
memory (i.e., from the cache)

b) If there is a store to the same address in the ROB, either get the value (if
ready) or the tag

but there is an additional situation nhow

c) If thereis a store to an unknown address in the ROB or if the address of
the load is unknown, wait!

Load-Store Queues

In practice, the memory part of the ROB is implemented
separately and is called a Load-Store Queue (in turn, usually
implemented as a Load and a Store queues)

ROB |:> ROB

Second Step: Dynamic Scheduling

* The ability to reorder instructions unlocks a tangible amount of ILP

[IF [ID Exi[Ex2[we]| veles
2| 1F | 1D [Ex1[Ex2]EX3| EX4 | EXS5 [MEM

N [1IF [D EX1 [Ex2 WB

S +[1IF | 1D EX1 MEM| WB

= 5: IF | ID EX1 [EX2 MEM

o 6: IF | ID [EX1|EX2

A~ B

Summary: ILP So Far...

l CycIe:s
Instructions

Py

l-

1 1
Standard

Pipe

ining

Dynamic Scheduling

References

* Patterson & Hennessy, COD — RISC-V Edition
— Section 4.11 (in particular “Dynamic Multiple-Issue Processors”)

	CS-200�Computer Architecture�—�Part 4d. Instruction Level Parallelism�Dynamic Scheduling
	Starting Point (Programmer Model)
	Pipelined Processor
	First Step: Pipelining
	ILP So Far…
	Simple Pipelining
	Dynamic Scheduling: The Idea
	Break the Rigidity �of the Basic Pipelining
	Dynamically Scheduled Processor
	Problems to Solve
	Reservation Stations
	Reservation Stations
	Problems to Solve
	WAR and WAW Data Dependences
	In-order Completion
	Out-of-order Completion
	Register Renaming
	Register Renaming
	Reservation Stations
	Dynamically Scheduled Processor
	Out-of-order �Commitment and Exceptions
	A Problem with Exceptions…
	Reordering Instructions �at Writeback
	Reorder Buffer
	Dynamically Scheduled Processor
	Fetching and Decoding Instructions
	Committing Instructions (1/4)
	Committing Instructions (2/4)
	Committing Instructions (3/4)
	Committing Instructions (4/4)
	Reordering and Precise Exceptions
	Reporting Exceptions (1/3)
	Reporting Exceptions (2/3)
	Reporting Exceptions (3/3)
	Problems to Solve
	Reservation Stations
	Decoding and Dependences
	No Dependence
	Dependence and Value in the ROB
	Dependence and Tag in the ROB
	Multiple Dependences?
	Dependences through Memory
	Load-Store Queues
	Second Step: Dynamic Scheduling
	Summary: ILP So Far…
	References

