
1

CS-200
Computer Architecture

—
Part 4d. Instruction Level Parallelism

Dynamic Scheduling

Paolo Ienne
<paolo.ienne@epfl.ch>



2

Starting Point (Programmer Model)

• Sequential multicycle processor

• The processing of each instruction individually as been squeezed as much 
as possible to make execution as fast as possible

• What’s next?!

Cycles

Instructions

1:

2:

3:



3

Pipelined Processor

• For instance, 5-stage pipeline with all forwarding paths (EE, 
ME, and WD) typical of MIPS and RISC-V

F E M W

RF

D



4

First Step: Pipelining

• Simplest form of Instruction Level Parallelism (ILP): several instructions 
are now executed at once

IF ID EX WB
IF ID EX MEM

IF ID EX MEM WB
IF ID

IF ID

Cycles
In

st
ru

ct
io

ns
1:

2:

3:

4:
5:

MEM
WB

EX MEM
EX
WB



5

ILP So Far…

Instructions

Cycles

?
Pipelining

Standard



6

Simple Pipelining

• Scope for parallelism is limited:
– Data hazards limit the usability of the pipeline

• Whenever the next instruction cannot be executed, the pipeline is stalled and no new useful work is done 
until the “problem” is solved (e.g., cache miss)

– Control hazards limit the usability of the pipeline
• Must squash fetched and decoded instruction following a branch

• Rigid sequencing
– Special “slots” for everything even if sometimes useless (e.g., M)
– Every instruction must be coerced to the same framework (floating point vs. 

integer?)
– Structural hazards avoided “by construction”



7

Dynamic Scheduling: The Idea

• Extend the scope to extract parallelism:

divd $f0, $f2, $f4
addd $f10, $f0, $f8
subd $f12, $f8, $f14

• Why not to execute subd while addd waits for the result of divd?
• Relax a fundamental rule: instructions can be executed out of program

order! (but the result must still be correct…)

Any 
long-running 
instruction



8

Break the Rigidity 
of the Basic Pipelining

• Continue fetching and decoding even and especially if one cannot execute previous 
instructions

• Keep writeback waiting if there is a structural hazard, without slowing down execution

• Clearly, results will also out-of-order (OOO)…

Solution: Split the tasks in independent units/pipelines

Fetch and Decode
Execute

Writeback



9

Dynamically Scheduled Processor

F D

ALU

ROB W

RF

MEM
(3)

RS

RS

F D E/M1/… W

All possible 
forwarding paths

Sort of “thick” 
pipeline registers



1
0

Problems to Solve

• Structural Hazards
– Are the required resources available?
– New problem: previously handled by rigid pipeline

• RAW Data Hazards
– Are the operands ready to start execution?
– Old problem

• WAR and WAW Data Hazards
– The new data overwrite something which is still required?
– WAW is a completely new problem—impossible before; WAR often cannot occur



1
1

Reservation Stations
• A reservation station checks that the operands are available (RAW) and that the Execution Unit is free 

(Structural Hazard), then starts execution

addd – MUL3 ???1
subd ALU3 – ??? 0xffff fee11

0
Tag1 Tag2 Arg1 Arg2Op

ALU1:

ALU2:

ALU3: 0xa87f b351

a b
ALU

from
EUs and RF

from
F&D Unit

Each entry is similar to the 
original pipeline register



1
2

Reservation Stations

Reservation
Station

Fetch&Decode Unit and Register File 
(1) Fetched operation descriptions and

(2a) known operands (from RF)
or (2b) source-operation tags

All Execution Units
(1) Tags of the executed operations

and (2) corresponding results

Dependent Execution Unit
(1) Description of operations ready to execute
with (2) corresponding tags and (3) operands



1
3

Problems to Solve

• Structural Hazards
– Are the required resources available?
– New problem: previously handled by rigid pipeline

• RAW Data Hazards
– Are the operands ready to start execution?
– Old problem

• WAR and WAW Data Hazards
– The new data overwrite something which is still required?
– WAW is a completely new problem—impossible before; WAR often cannot occur



1
4

WAR and WAW Data Dependences

divd $f0, $f1, $f2

addd $f3, $f0, $f4

subd $f4, $f5, $f6

adddi $f0, $f5, 10

• addd has a RAW dependence on divd
• subd has a WAR dependence on addd
• adddi has a WAW dependence on divd

Name
dependencies

True or data
dependencies



1
5

In-order Completion

• Simple pipelines have no WAR and WAW hazards by construction

EX5EX4IF ID EX1 WB

IF ID EX MEM

IF ID EX MEM WB

MEM

WB

EX2 EX3

IF ID EX MEM WB

EX

divd $f0,$f1,$f2

addd $f3,$f0,$f4

subd $f4,$f5,$f6

adddi $f0,$f5,10



1
6

Out-of-order Completion

• Dynamic pipelines may create WAW hazards

divd $f0,$f1,$f2

addd $f3,$f0,$f4

subd $f4,$f5,$f6

adddi $f0,$f5,10

IF ID EX1

IF ID

IF ID EX WB

EX2 EX4

IF ID EX

EX5EX3 WB

EX WB

WBWB

EX



1
7

Register Renaming

• WAW and WAR dependences are also called name
dependences: they do not carry a value between to instructions

• Often created by compilers to reuse the same registers
• Can be removed by avoiding the use of the same “name”  

rename the destination register whenever a new value is 
created

• Both the compiler (statically) and the processor (dynamically) 
can do that



1
8

Register Renaming
divd $f0, $f1, $f2

addd $f3, $f0, $f4

subd $f4, $f5, $f6

adddi $f0, $f4, 10

divd $f0, $f1, $f2

addd $f3, $f0, $f4

subd $f30, $f5, $f6

adddi $f29, $f30, 10

Renaming removes
WAR and WAW 
dependences



1
9

Reservation Stations

• Unavailable operands are identified by the name of the reservation 
station in charge of the originating instruction

• Implicit register renaming, thus removing WAR and WAW hazards
• New results are seen at their inputs through special result bus(es)
• Writeback into the registers can be done in-order or, to some extent, out-

of-order



2
0

Dynamically Scheduled Processor

Instruction
Fetch & Decode

Unit

Reservation
Stn.

Load/Store
UnitFP UnitALU

Commit
Unit

Register FileBranch
Unit

Reservation
Stn.

Reservation
Stn.

Reservation
Stn.



2
1

Out-of-order 
Commitment and Exceptions

• Exception handlers should know exactly where a problem has occurred, 
especially for nonterminating exceptions (e.g., page fault)

• Of course, one assumes that everything before the faulty instruction was 
executed and everything after was not

• With dynamic execution it might no longer be true…



2
2

A Problem with Exceptions…
• Precise exceptions

– Reordering at commit; user view is that of 
a fully in-order processor

• Imprecise exceptions
– No reordering; out-of-order completion 

visible to the user
– The OS/programmer must be aware of the 

problem and take appropriate action (e.g., 
execute again the complete subroutine 
where the problem occurred)

Precise
andi $t4, $t2, 0xff
andi $t5, $t4, 0xff
addi $v0, $t5, 1
srl $t2, $t2, 8

 lw $t3, 8($t6)
andi $t4, $t3, 3
addi $t0, $t0, 4
addi $t1, $t1, 4

Imprecise
andi $t4, $t2, 0xff
andi $t5, $t4, 0xff
addi $v0, $t5, 1
srl $t2, $t2, 8

 lw $t3, 8($t6)
andi $t4, $t3, 3
addi $t0, $t0, 4
addi $t1, $t1, 4

Generally unacceptable in 
contemporary systems

(e.g., virtual memory, I/O 
interrupts, unsupported 

instructions)



2
3

to MEM
and RF

from
F&D Unit

0
0
0
1
0
0

Register Address ValueTag

from EUs

$f3 0x627f ba5a

MEM1 ???
$f5MUL2 ???

0xa87f b351

head

tail

0x1000 000c

0x1000 0008

0x1000 0004

PCExcpt.

Reordering Instructions 
at Writeback

• Needs a reorder buffer in the Commit Unit

Was there an 
exception?
(see later)

The “external” and
“internal” identifiers of 

the instruction
The destination of the result:
register or memory address

The result,
once available



2
4

Reorder Buffer

Commit Unit
(Reorder Buffer)

Fetch&Decode Unit
(1) Fetched-operation tags in original

order, (2) destination register or
address, and (3) PC

All Execution Units
(1) Tags of the executed operations

and (2) corresponding results

Register File and Memory
For each instruction, in the original fetch order,

(1) destination register or address and (2) value to write



2
5

Dynamically Scheduled Processor

Instruction
Fetch & Decode

Unit

Reservation
Stn.

Load/Store
UnitFP UnitALU

Commit
Unit

Register FileBranch
Unit

Reservation
Stn.

Reservation
Stn.

Reservation
Stn.

Machine state is 
updated in order

Computation advances independently
from machine state updates



2
6

to MEM
and RF

from
F&D Unit

0
0
0
1
0
0

Register Address ValueTag

from EUs

$f3 0x627f ba5a

MEM1 ???
$f5MUL2 ???

0xa87f b351

head

tail

0x1000 000c

0x1000 0008

0x1000 0004

PCExcpt.

0

Fetching and Decoding Instructions

$f7ALU3 ???0x1000 0010tail



2
7

Committing Instructions (1/4)

0
0
0
0
0

0

Register Address ValueTag

$f3 0x627f ba5a

MEM1 ???
$f5MUL2 ???

0xa87f b351

0x1000 000c

0x1000 0008

0x1000 0004

PCExcpt.

tail

0 $f3 0xa2cd 374f0x1000 0010

0 MEM3 ???0x3746 09fa0x1000 0014

head

Write 0x627fba5a to register $f3



2
8

Committing Instructions (2/4)

0
0
0
0
0

0

Register Address ValueTag

MEM1 ???
$f5MUL2 ???

0xa87f b351

0x1000 000c

0x1000 0008

PCExcpt.

tail

0 $f3 0xa2cd 374f0x1000 0010

0 MEM3 ???0x3746 09fa0x1000 0014

head

Wait until the oldest instruction has its result



2
9

Committing Instructions (3/4)

0
0
0
0
0

0

Register Address ValueTag

0x98cd 76a2

$f5 0x7677 abcd

0xa87f b351

0x1000 000c

0x1000 0008

PCExcpt.

tail

0 $f3 0xa2cd 374f0x1000 0010

0 MEM3 ???0x3746 09fa0x1000 0014

head

Write 0x98cd76a2 to memory location 0xa87fb351



3
0

Committing Instructions (4/4)

0
0
0
0
0

0

Register Address ValueTag

$f5 0x7677 abcd0x1000 000c

PCExcpt.

tail

0 $f3 0xa2cd 374f0x1000 0010

0 MEM3 ???0x3746 09fa0x1000 0014

head

Write 0xa2cd374f to register $f5



3
1

Reordering and Precise Exceptions

How does this help with exceptions?
• When a synchronous exception happens, we do not report it but 

we mark the entry corresponding to the instruction which 
caused the exception in the ROB

• When we would be ready to commit the instruction, we raise 
the exception instead

• We also trash the content of the ROB and of all RSs



3
2

Reporting Exceptions (1/3)

0
0
0
0
0

0

Register Address ValueTag

$f3 0x627f ba5a

MEM1 ???
$f5MUL2 ???

0xa87f b351

0x1000 000c

0x1000 0008

0x1000 0004

PCExcpt.

tail

0 $f3 0xa2cd 374f0x1000 0010

0 MEM3 ???0x3746 09fa0x1000 0014

head

The store MEM1 results in a TLB Miss We simply record it

1



3
3

Reporting Exceptions (2/3)

0
0
0
1
0

0

Register Address ValueTag

$f3 0x627f ba5a

MEM1 ???
$f5MUL2 ???

0xa87f b351

0x1000 000c

0x1000 0008

0x1000 0004

PCExcpt.

tail

0 $f3 0xa2cd 374f0x1000 0010

0 MEM3 ???0x3746 09fa0x1000 0014

head

Write 0x627fba5a to register $f3 as if nothing happened



3
4

Reporting Exceptions (3/3)

0
0
0
1
0

0

Register Address ValueTag

MEM1 ???
$f5 0x7677 abcd

0xa87f b351

0x1000 000c

0x1000 0008

PCExcpt.

tail

0 $f3 0xa2cd 374f0x1000 0010

0 MEM3 ???0x3746 09fa0x1000 0014

head

Now raise the TLB Miss exception in the instruction at location 0x10000008

Exception PC



3
5

Problems to Solve

• Structural Hazards
– Are the required resources available?
– New problem: previously handled by rigid pipeline

• RAW Data Hazards
– Are the operands ready to start execution?
– Old problem

• WAR and WAW Data Hazards
– The new data overwrite something which is still required?
– WAW is a completely new problem—impossible before; WAR often cannot occur

Reservation stations take care of 
contention for execution units

The commit unit writes back one 
instruction at a time 



3
6

Reservation Stations
• A reservation station checks that the operands are available (RAW) and that the Execution Unit is free 

(Structural Hazard), then starts execution

addd – MUL3 ???1
subd ALU3 – ??? 0xffff fee11

0
Tag1 Tag2 Arg1 Arg2Op

ALU1:

ALU2:

ALU3: 0xa87f b351

a b
ALU

from
EUs and RF

from
F&D Unit



3
7

Decoding and Dependences

When decoding an instruction, we are supposed to put, for each operand, either a tag or 
a value in the corresponding reservation station—but how do we know if we can read the 
register file, for instance?!

Possible situations:
• No dependence  Read the value from the RF
• Dependence from an ongoing instruction

– If the value is already computed  Get the value from the ROB
– If the value is not yet computed  Get the tag from the ROB

The Reorder Buffer (ROB) knows of all instructions 
not yet committed and of their destination registers



3
8

No Dependence

0
0
0
0
0

0

Register Address ValueTag

$f3

$f2 0x627f ba5a

0xa87f b351

$f5MUL2 ???0x1000 000c

0x1000 0008

0x1000 0004

PCExcpt.

tail

0 $f3ALU3 ???0x1000 0010

0 MEM3 ???0x3746 09fa0x1000 0014

head

Looking for $f1? 
No ongoing instruction will produce it, hence it is safe to read it from the Register File



3
9

0
0
0
0
0

0

Register Address ValueTag

$f3

$f2 0x627f ba5a

0xa87f b351

$f5MUL2 ???0x1000 000c

0x1000 0008

0x1000 0004

PCExcpt.

tail

0 $f3ALU3 ???0x1000 0010

0 MEM3 ???0x3746 09fa0x1000 0014

head

Dependence and Value in the ROB

Looking for $f2? 
An ongoing instruction has produced it, hence we should read 0x627fba5a from the ROB



4
0

0
0
0
0
0

0

Register Address ValueTag

$f3

$f2 0x627f ba5a

0xa87f b351

$f5MUL2 ???0x1000 000c

0x1000 0008

0x1000 0004

PCExcpt.

tail

0 $f3ALU3 ???0x1000 0010

0 MEM3 ???0x3746 09fa0x1000 0014

head

Dependence and Tag in the ROB

Looking for $f5? 
An ongoing instruction will produce it, hence we need to use tag MUL2 as found in the ROB



4
1

0
0
0
0
0

0

Register Address ValueTag

$f3

$f2 0x627f ba5a

0xa87f b351

$f5MUL2 ???0x1000 000c

0x1000 0008

0x1000 0004

PCExcpt.

tail

0 $f3ALU3 ???0x1000 0010

0 MEM3 ???0x3746 09fa0x1000 0014

head

Multiple Dependences?

Looking for $f3? 
Two ongoing instructions produce it and it is the most recent one which matters (ALU3)



4
2

Dependences through Memory

The way we detect and resolve dependences through memory (a store at 
some address and a subsequent load from the same address) is the same as 
for registers
For every load, check the ROB:
a) If there is no store to the same address in the ROB, get the value from 

memory (i.e., from the cache)
b) If there is a store to the same address in the ROB, either get the value (if 

ready) or the tag
but there is an additional situation now

c) If there is a store to an unknown address in the ROB or if the address of 
the load is unknown, wait!



4
3

Load-Store Queues

In practice, the memory part of the ROB is implemented 
separately and is called a Load-Store Queue (in turn, usually 

implemented as a Load and a Store queues)

ROB ROB

LQ

SQ



4
4

Second Step: Dynamic Scheduling

• The ability to reorder instructions unlocks a tangible amount of ILP

IF ID EX1 EX2 WB
IF ID EX1 EX2 EX3 EX4 EX5 MEM

IF ID EX1 EX2

EX2
IF ID EX1 MEM WB

IF ID EX1 MEM

Cycles
In

st
ru

ct
io

ns
1:

2:

3:

4:
5:

EX2IF ID EX16:

WB



4
5

Summary: ILP So Far…

Instructions

Cycles ?

Pipelining

Dynamic Scheduling

Standard



4
6

References

• Patterson & Hennessy, COD – RISC-V Edition
– Section 4.11 (in particular “Dynamic Multiple-Issue Processors”)


	CS-200�Computer Architecture�—�Part 4d. Instruction Level Parallelism�Dynamic Scheduling
	Starting Point (Programmer Model)
	Pipelined Processor
	First Step: Pipelining
	ILP So Far…
	Simple Pipelining
	Dynamic Scheduling: The Idea
	Break the Rigidity �of the Basic Pipelining
	Dynamically Scheduled Processor
	Problems to Solve
	Reservation Stations
	Reservation Stations
	Problems to Solve
	WAR and WAW Data Dependences
	In-order Completion
	Out-of-order Completion
	Register Renaming
	Register Renaming
	Reservation Stations
	Dynamically Scheduled Processor
	Out-of-order �Commitment and Exceptions
	A Problem with Exceptions…
	Reordering Instructions �at Writeback
	Reorder Buffer
	Dynamically Scheduled Processor
	Fetching and Decoding Instructions
	Committing Instructions (1/4)
	Committing Instructions (2/4)
	Committing Instructions (3/4)
	Committing Instructions (4/4)
	Reordering and Precise Exceptions
	Reporting Exceptions (1/3)
	Reporting Exceptions (2/3)
	Reporting Exceptions (3/3)
	Problems to Solve
	Reservation Stations
	Decoding and Dependences
	No Dependence
	Dependence and Value in the ROB
	Dependence and Tag in the ROB
	Multiple Dependences?
	Dependences through Memory
	Load-Store Queues
	Second Step: Dynamic Scheduling
	Summary: ILP So Far…
	References

